Hi, I want to create a connection between a signal and slot, which are in different classes. @Mogli123 said in signal slot between 2 classes: // I'm not shure how to do that. I'm very new in cpp and qt and don't know how to solve that problem. Can you give me a small example please? It would be possible to have the slots to which the resized and moved signals are connected check the new position or size of the circle and respond accordingly, but it's more convenient and requires less knowledge of circles by the slot functions if the signal that is.
Sales: 1-937-743-2389. Service: 1-937-746-7568. 430 Conover Drive, Franklin, OH 45005. Trademark Gameroom Slot Machine Coin Bank – Realistic Mini Table Top Novelty Las Vegas Casino Style Toy with Lever for Kids & Adults (Lucky 7S) 3.6 out of 5 stars 12 $21.99 $ 21. At real slot machines for sale we also provide a warranty on all slot machines for home use and program the slot machine according to your specification for bill, ticket, coin, or token validation. All reconditioned slot machines for sale that will be used in a home operate on 110 volts with a. IGT Real Slot Machine Red,white, And Blue Deluxe Quarter Machine Works Great! Original Casino Double Diamond Quarter Slot Machine. IGT S+ S Plus Slant Top Slot Machine.25 Quarter HOPPER.Tested! $46.85 shipping. 500 BRAND NEW SILVER Quarter 25mm 25 cent size Pachislo Slot Machine Tokens. Real table top slot machines for sale. We have a large collection of slot machines. Our slot machines for sale come from Las Vegas casinos. Authentic slot machines work and are ready to be shipped. Buy Sell Trade & Repair Slot Machines and Casino Gaming Equipment and Tables. 763-253-0230 info@worldwide-gaming.com. Checkout (0) Items. Items total: $0.00 (0) My Account.
- Signals and Events in Qt. But lets start with Qt. Qt offers two different systems for our needs, Qt signal/slot and QEvents. While Qt signal/slot is the moc driven signaling system of Qt (which you can connect to via QObject::connect), there is a second Event interface informing you about certain system-like events, such as QMouseEvent, QKeyEvent or QFocusEvent.
- Remember that connections are not between classes, but between instances. If you emit a signal and expect connected slots to be called, it must be emitted on an instance on which the connection was made.
- Compiler can help us detect type mismatches. Signals and slots are loosely coupled: a class which emits a signal neither knows nor cares which slots receive the signal. Qt's signals and slots mechanism ensures that if you connect a signal to a slot, the slot will be.
making changes in one component trigger behavior in another. You can trigger behaviors in response to user input, such as button presses or text input, or events in your own code.SearchComments: signalTags:Video: 337608027/137c732675Duration: 10IsPremium: TrueCollection: startCollectionIndex: 1
Build complex application behaviors using signals and slots, and override widget event handling with custom events.
As already described, every interaction the user has with a Qt application causes an Event. There are multiple types of event, each representing a difference type of interaction — e.g. mouse or keyboard events.
Events that occur are passed to the event-specific handler on the widget where the interaction occurred. For example, clicking on a widget will cause a QMouseEvent
to be sent to the .mousePressEvent
event handler on the widget. This handler can interrogate the event to find out information, such as what triggered the event and where specifically it occurred.
You can intercept events by subclassing and overriding the handler function on the class, as you would for any other function. You can choose to filter, modify, or ignore events, passing them through to the normal handler for the event by calling the parent class function with super()
.
However, imagine you want to catch an event on 20 different buttons. Subclassing like this now becomes an incredibly tedious way of catching, interpreting and handling these events.
Thankfully Qt offers a neater approach to receiving notification of things happening in your application: Signals.
Signals
Instead of intercepting raw events, signals allow you to 'listen' for notifications of specific occurrences within your application. While these can be similar to events — a click on a button — they can also be more nuanced — updated text in a box. Data can also be sent alongside a signal - so as well as being notified of the updated text you can also receive it.
The receivers of signals are called Slots in Qt terminology. A number of standard slots are provided on Qt classes to allow you to wire together different parts of your application. However, you can also use any Python function as a slot, and therefore receive the message yourself.
Load up a fresh copy of `MyApp_window.py` and save it under a new name for this section. The code is copied below if you don't have it yet.
Basic signals
First, let's look at the signals available for our QMainWindow
. You can find this information in the Qt documentation. Scroll down to the Signals section to see the signals implemented for this class.
Qt 5 Documentation — QMainWindow Signals
As you can see, alongside the two QMainWindow
signals, there are 4 signals inherited from QWidget
and 2 signals inherited from Object
. If you click through to the QWidget
signal documentation you can see a .windowTitleChanged
signal implemented here. Next we'll demonstrate that signal within our application.
Qt 5 Documentation — Widget Signals
The code below gives a few examples of using the windowTitleChanged
signal.
Try commenting out the different signals and seeing the effect on what the slot prints.
Qt Signal Slot Performance
We start by creating a function that will behave as a ‘slot' for our signals.
Then we use .connect on the .windowTitleChanged
signal. We pass the function that we want to be called with the signal data. In this case the signal sends a string, containing the new window title.
If we run that, we see that we receive the notification that the window title has changed.
Events
Next, let's take a quick look at events. Thanks to signals, for most purposes you can happily avoid using events in Qt, but it's important to understand how they work for when they are necessary.
As an example, we're going to intercept the .contextMenuEvent
on QMainWindow
. This event is fired whenever a context menu is about to be shown, and is passed a single value event
of type QContextMenuEvent
.
To intercept the event, we simply override the object method with our new method of the same name. So in this case we can create a method on our MainWindow
subclass with the name contextMenuEvent
and it will receive all events of this type.
If you add the above method to your MainWindow
class and run your program you will discover that right-clicking in your window now displays the message in the print statement.
Sometimes you may wish to intercept an event, yet still trigger the default (parent) event handler. You can do this by calling the event handler on the parent class using super
as normal for Python class methods.
This allows you to propagate events up the object hierarchy, handling only those parts of an event handler that you wish.
However, in Qt there is another type of event hierarchy, constructed around the UI relationships. Widgets that are added to a layout, within another widget, may opt to pass their events to their UI parent. In complex widgets with multiple sub-elements this can allow for delegation of event handling to the containing widget for certain events.
However, if you have dealt with an event and do not want it to propagate in this way you can flag this by calling .accept()
on the event.
Alternatively, if you do want it to propagate calling .ignore()
will achieve this.
In this section we've covered signals, slots and events. We've demonstratedsome simple signals, including how to pass less and more data using lambdas.We've created custom signals, and shown how to intercept events, pass onevent handling and use .accept()
and .ignore()
to hide/show eventsto the UI-parent widget. In the next section we will go on to takea look at two common features of the GUI — toolbars and menus.
Signals and slots is a language construct introduced also in Qt[1] for communication between objects which makes it easy to implement the observer pattern while avoiding boilerplate code. The concept is that GUI widgets can send signals containing event information which can be received by other widgets / controls using special functions known as slots. This is similar to C/C++ function pointers, but signal/slot system ensures the type-correctness of callback arguments.[citation needed]
The signal/slot system fits well with the way graphical user interfaces are designed.[citation needed] Similarly, the signal/slot system can be used for other non-GUI usages, for example asynchronous I/O (including sockets, pipes, serial devices, etc.) event notification or to associate timeout events with appropriate object instances and methods or functions. It is easy to use and no registration/deregistration/invocation code need to be written, because Qt's metaobject compiler (MOC) automatically generates the needed infrastructure.
A commonly used metaphor[according to whom?] is a spreadsheet. A spreadsheet has cells that observe the source cell(s). When the source cell is changed, the dependent cells are updated from the event.
Alternative implementations[edit]
There are some implementations of signal/slot systems based on C++ templates, which don't require the extra metaobject compiler, as used by Qt, such as libsigc++, sigslot, vdk-signals, nano-signal-slot, neosigslot, Signals, boost.signals2, Synapse, Cpp::Events, Platinum and JBroadcaster. Common Language Infrastructure (CLI) languages such as C# also supports a similar construct although with a different terminology and syntax: events play the role of signals, and delegates are the slots. Another implementation of signals exists for ActionScript 3.0, inspired by C# events and signals/slots in Qt. Additionally, a delegate can be a local variable, much like a function pointer, while a slot in Qt must be a class member declared as such. The C based GObject system also provides similar functionality via GSignal.In D it is implemented by std.signals.
See also[edit]
Libraries[edit]
Java: sig4j - multi-threaded, type-safe, based on the FunctionalInterface annotation introduced in Java 8.
C++: vdk-signals - thread-safe, type-safe, written in C++11 with atomic variables.
References[edit]
Build complex application behaviors using signals and slots, and override widget event handling with custom events.
As already described, every interaction the user has with a Qt application causes an Event. There are multiple types of event, each representing a difference type of interaction — e.g. mouse or keyboard events.
Events that occur are passed to the event-specific handler on the widget where the interaction occurred. For example, clicking on a widget will cause a QMouseEvent
to be sent to the .mousePressEvent
event handler on the widget. This handler can interrogate the event to find out information, such as what triggered the event and where specifically it occurred.
You can intercept events by subclassing and overriding the handler function on the class, as you would for any other function. You can choose to filter, modify, or ignore events, passing them through to the normal handler for the event by calling the parent class function with super()
.
However, imagine you want to catch an event on 20 different buttons. Subclassing like this now becomes an incredibly tedious way of catching, interpreting and handling these events.
Thankfully Qt offers a neater approach to receiving notification of things happening in your application: Signals.
Signals
Instead of intercepting raw events, signals allow you to 'listen' for notifications of specific occurrences within your application. While these can be similar to events — a click on a button — they can also be more nuanced — updated text in a box. Data can also be sent alongside a signal - so as well as being notified of the updated text you can also receive it.
The receivers of signals are called Slots in Qt terminology. A number of standard slots are provided on Qt classes to allow you to wire together different parts of your application. However, you can also use any Python function as a slot, and therefore receive the message yourself.
Load up a fresh copy of `MyApp_window.py` and save it under a new name for this section. The code is copied below if you don't have it yet.
Basic signals
First, let's look at the signals available for our QMainWindow
. You can find this information in the Qt documentation. Scroll down to the Signals section to see the signals implemented for this class.
Qt 5 Documentation — QMainWindow Signals
As you can see, alongside the two QMainWindow
signals, there are 4 signals inherited from QWidget
and 2 signals inherited from Object
. If you click through to the QWidget
signal documentation you can see a .windowTitleChanged
signal implemented here. Next we'll demonstrate that signal within our application.
Qt 5 Documentation — Widget Signals
The code below gives a few examples of using the windowTitleChanged
signal.
Try commenting out the different signals and seeing the effect on what the slot prints.
Qt Signal Slot Performance
We start by creating a function that will behave as a ‘slot' for our signals.
Then we use .connect on the .windowTitleChanged
signal. We pass the function that we want to be called with the signal data. In this case the signal sends a string, containing the new window title.
If we run that, we see that we receive the notification that the window title has changed.
Events
Next, let's take a quick look at events. Thanks to signals, for most purposes you can happily avoid using events in Qt, but it's important to understand how they work for when they are necessary.
As an example, we're going to intercept the .contextMenuEvent
on QMainWindow
. This event is fired whenever a context menu is about to be shown, and is passed a single value event
of type QContextMenuEvent
.
To intercept the event, we simply override the object method with our new method of the same name. So in this case we can create a method on our MainWindow
subclass with the name contextMenuEvent
and it will receive all events of this type.
If you add the above method to your MainWindow
class and run your program you will discover that right-clicking in your window now displays the message in the print statement.
Sometimes you may wish to intercept an event, yet still trigger the default (parent) event handler. You can do this by calling the event handler on the parent class using super
as normal for Python class methods.
This allows you to propagate events up the object hierarchy, handling only those parts of an event handler that you wish.
However, in Qt there is another type of event hierarchy, constructed around the UI relationships. Widgets that are added to a layout, within another widget, may opt to pass their events to their UI parent. In complex widgets with multiple sub-elements this can allow for delegation of event handling to the containing widget for certain events.
However, if you have dealt with an event and do not want it to propagate in this way you can flag this by calling .accept()
on the event.
Alternatively, if you do want it to propagate calling .ignore()
will achieve this.
In this section we've covered signals, slots and events. We've demonstratedsome simple signals, including how to pass less and more data using lambdas.We've created custom signals, and shown how to intercept events, pass onevent handling and use .accept()
and .ignore()
to hide/show eventsto the UI-parent widget. In the next section we will go on to takea look at two common features of the GUI — toolbars and menus.
Signals and slots is a language construct introduced also in Qt[1] for communication between objects which makes it easy to implement the observer pattern while avoiding boilerplate code. The concept is that GUI widgets can send signals containing event information which can be received by other widgets / controls using special functions known as slots. This is similar to C/C++ function pointers, but signal/slot system ensures the type-correctness of callback arguments.[citation needed]
The signal/slot system fits well with the way graphical user interfaces are designed.[citation needed] Similarly, the signal/slot system can be used for other non-GUI usages, for example asynchronous I/O (including sockets, pipes, serial devices, etc.) event notification or to associate timeout events with appropriate object instances and methods or functions. It is easy to use and no registration/deregistration/invocation code need to be written, because Qt's metaobject compiler (MOC) automatically generates the needed infrastructure.
A commonly used metaphor[according to whom?] is a spreadsheet. A spreadsheet has cells that observe the source cell(s). When the source cell is changed, the dependent cells are updated from the event.
Alternative implementations[edit]
There are some implementations of signal/slot systems based on C++ templates, which don't require the extra metaobject compiler, as used by Qt, such as libsigc++, sigslot, vdk-signals, nano-signal-slot, neosigslot, Signals, boost.signals2, Synapse, Cpp::Events, Platinum and JBroadcaster. Common Language Infrastructure (CLI) languages such as C# also supports a similar construct although with a different terminology and syntax: events play the role of signals, and delegates are the slots. Another implementation of signals exists for ActionScript 3.0, inspired by C# events and signals/slots in Qt. Additionally, a delegate can be a local variable, much like a function pointer, while a slot in Qt must be a class member declared as such. The C based GObject system also provides similar functionality via GSignal.In D it is implemented by std.signals.
See also[edit]
Libraries[edit]
Java: sig4j - multi-threaded, type-safe, based on the FunctionalInterface annotation introduced in Java 8.
C++: vdk-signals - thread-safe, type-safe, written in C++11 with atomic variables.
References[edit]
- ^'Signals & Slots - QtCore 5.1'. Qt Project. 2013-07-04. Retrieved 2013-07-04.